Digital Etch-a-Sketch
ENGS 31 Final Project Report

By: Alison Hagen and Himadri Narasimhamurthy

Abstract

For our final project, we created a digital Etch-A-Sketch. The device receives its input from two
rotary encoder modules which determine whether the user is drawing and in what direction (left,
right, up, or down), which is outputted to a VGA screen. The knob to the left of the FPGA board
controls the right (clockwise) or left (counterclockwise) movement and the one to the right
controls the up (clockwise) or down (counterclockwise) movement. Similar to the traditional
Etch-A-Sketch, we have an option to clear the screen with the input of a button and we have 8

color options for the drawing occurring on the screen, determined by switches.

Table of Contents

Lo INrOdUCION ..ottt e 4

2. Desi@n SOIULION ..ouiei et 4

2.1. Design SPecifiCationsceuuiiuiintiieit et 4

2.2. Operating INStrUCHIONSuuintitt ettt e eeeeeaanns 4

2.3. Theory of OPrationcouiiutintittit et eeaaenns 5

2.4. Construction and Debuggingcooiiiiiiiiiiii i, 8

3. Justification and Evaluation ... 9
I 1) T L1] 10 10
5. AcknOWIedZemEntso.oiiii i e 10
6. RETEIENCES ...ttt 11
R o) 155 114 BT 12

1. Introduction

The goal of our project is to build an Etch-a-sketch game where a user can turn knobs to draw an
image. The input from one rotary encoder knob directs the horizontal direction of the drawing
path and another directs the vertical direction. The user can also choose from a variety of colors
that will change based on the selected switch input to make their drawing. In order to clear the

drawing and start again on a blank background, the user can press the reset button.

2. Design Solution

2.1 Design Specifications
Our project takes input from the user in through turns of the two rotary encoder knobs to
determine pixel drawing position, eight switches for colors, and one button to reset the game.
The output is drawn on a VGA screen. Therefore, an FPGA with two attachment PMOS
Encoders, 8 switches and one button are required for input and a VGA is required for output. See
Appendix A for an image of our working device and Appendices B and C for block diagrams of

the final design.

2.2 Operating Instructions
First, connect the FPGA (with two rotary encoders attached to the PMOD locations JA and JB)
to a VGA with the connector and plug in the VGA. The knob on the left determines horizontal
position and the knob on the right determines vertical position. Each click or step turned on the
knob will result in an increment (when turned to the right) or a decrement (when turned to the
left) of the pixel coordinate. To change the color at any point, the user can flip up one switch at a
time. There are eight switches and each one reflects a different color. If multiple switches are up

at the same time of drawing, the colors have precedence from the leftmost to the rightmost, so

they will draw in the color of the leftmost switch which is up. Every line drawn on the screen
will appear connected unless the user switches to black (leftmost switch) and moves to a new
location; black can also be used like an eraser. The user may turn the knobs as much as they want
before pressing the reset button which will clear the drawing and return to a black screen with

the “pen” location at the same spot as it was before the clear.

2.3 Theory of Operation
Our circuit works as follows (in depth explanations of the modules are located in this section):
When the user turns the rotary encoders, the signals are fed through debouncers and then into a
controller which outputs signals to our circuit signaling if the pixel coordinates’ values should
increase or decrease. Then the circuit changes the color of the new pixel drawing position to
whichever one is selected through the switches through saving the pixel’s location as the address
in the block RAM and the color code as the information. The single switch that is selected of the
8 switches corresponds to a specific color for the outputted pixels.
Debouncer
The first step in our design is debouncing the rotary encoder signals since, from the
beginning of the project, we had heard about the noisiness of the encoders. Therefore, we
fed each signal, the A and the B from each rotary encoder, through its own respective
debouncer. The debouncer, for which code can be found in Appendix N, worked by
running the input through a series of flip flops while a counter ran. This allowed for us to
get smooth signals which we could then feed into our controller.
Rotary Encoder Controller
This became the most important step in deciphering our rotary encoder signals. As

mentioned in Appendix F, the PMODEnc modules are low true signals so we had to

modify our original controller. We also realized through the testbenching process that we
had to include many more states to account for all possible combinations of A and B
signals that we could receive from the debouncer. The state diagram for the controller can
be found in Appendix D and we can see the controller was also testbenched and the
results are clear in Appendix I. Therefore, we start in the idle state and wait for an input
signal to go low. Then, we move to our first hold state where we wait for the other input
signal to go low. If the first goes high before that happens, we must return to idle and this
same principle holds for all other hold states. If the second also goes low, we move to our
next hold state where we wait for the signal that went down first to return to high. Then
we move onto the increment or decrement state which outputs an inc or dec enable signal
when the second signal returns to high. Then it goes back to idle.

Colors
The colors module is a simple one, the code for which is found in Appendix P. It takes in
the input of 8 switches, each of which corresponds to a 4 bit code which is inputted into
memory and then a 12 bit color code which is read out later and dealt with in the VGA
part of the constraints file.

Board Top
In order to modularize our code and test just the parts of the code which dealt with the
FPGA, we created a top module for the board, found in Appendix O. This initialized four
debouncers, one for each signal, and two rotary encoder controllers, one per encoder. It
also initialized color switches by initializing the color module and translated the reset

button press into a signal.

PixelCalc
We create a module called PixelCalc in order to do the arithmetic for moving across the
screen at every click of the encoders. This works as a series of if statements into an
increment or decrement statement. We want to increment or decrement depending on if
the enable signal has been passed in and if we aren’t at a boundary. This code, found in
Appendix Q, was also tested with a testbench while we ran into bugs with our boundaries
and the results can be found in Appendix H.

Block RAM
We decided to do our memory through a True dual port block RAM that was generated
through Vivado. The write enable signal for the A side, or the writing side, was the video
on from the VGA controller and we wrote in the mem_color code from the Colors
module. Then, for the B side, or the read side, we had a write enable as well, which took
in the clear signal as the input and wrote all the addresses to black. The read output for
this was the color code at the VGA output’s address locations which were deciphered in
the top level. The memory map can be found in Appendix G. This made it easy for us to
store our addresses after we received a pixel x and y location from PixelCalc as a simple
concatenated vector, though it did end up taking up more memory than if we had used
arithmetic to simplify the addresses used for memory locations.

VGAController
The VGA Controller module, seen in Appendix R, was very similar to that of Professor
Hansen’s which was available to us in our class notes. We did not have to modify this for

our project much other than adding signals to actually increment pixel x and y locations,

since we were confident in the testbenched waveforms, in Appendix J, and their ability to
match those from the class notes.

Top
Finally, as with most projects, we had a Top file, for which the code is in Appendix S,
where we wired up all the modules with their FPGA inputs as inputs to the top and the
VGA outputs, i.e. Hsync, Vsync, and a 12-bit color vector, as outputs. The only non-
modular code in this file would be our color decoder which takes in the memory color
code after reading it and translates that into the 12-bit color that is needed for the VGA

constraints file.

2.4 Construction and debugging
Initially, we talked through our design and decided to write very modular code. First, we
designed and built the state machine for our rotary encoder controllers. Though this code later on
changed once we wrote a test bench to simulate the input, this was crucial in understanding how
the user’s input would be handled in the controller. Next, we focused on the VGA controller and
our code to calculate the pixel coordinates based on the VGA and user inputs. After writing a top
controller for the board and and overall top controller which combined all of our smaller
functions, we decided to focus on BRAM.
We tried to write the BRAM code ourselves instead of using Vivado’s tools and this is where we
ran into many problems. When trying to run our code, the VGA would simply not turn on and we
had many errors about lookup tables. We concluded that the BRAM was not functioning
properly and switched to use the Vivado tools for a True Dual Port Ram. After simulating our
rotary encoder controller with a test bench, we edited it to add more wait states. Finally, our

screen was able to turn on but the game was far from finished.

The initial image we drew on our VGA once working appeared twice, one on top of the other
with a unique border limitation that did not fill the entire screen. Our switches changed the colors
of the pixels drawn, but not in the order we expected. The reset button was also peculiar and
cleared the drawing but changed the background color to the previous pixel color. It also had a
random different tone for a vertical rectangle block on the screen that marked the borders for our
drawings. To debug this, we looked through our VGA controller and realized that we were
mapping into memory with a 10-bit X address and a 9-bit y address which meant that when they
became 17-bit addresses, they shifted the full concatenated memory address, causing the images
to be multiplied. We solved the problem by dividing both the x and y addresses by two (shifting
the vectors) when they were mapped as addresses into the memory.

Our final major bug was one where the right border of the screen was showing up blank even
though the pixel location was still incrementing. Initially we assumed this was an error in the
VGA controller due to the small size of the border. After some unsuccessful tries shifting the

H video on signal and Hsync signal by small factors, we realized this was not causing the
problem. We then decided to increase the amount of addresses which we could possibly store in
our Block RAM. Since we were simply concatenating X and Y for the BRAM address, we were
running out of memory early and therefore needed to increase memory depth for the full screen

to display. This was able to resolve our issue and leave us with a functional Etch-a-Sketch.

3. Justification and Evaluation

Overall, our project was designed well with very modular code and a resulting working Etch-a-
sketch. The colors chosen are bright and the switches are an intuitive way to change it. The way
that we decided to have larger scaled pixels for drawing paid off as the images come out clear.

Our decision to use Block RAM through Vivado’s IP tools also ended up working well and this

was better than the alternative with manually written Block RAM. If we were to do the project
again we would consider including the ability to change the background color in addition to the
pixel color. In addition to that, we also have some code blocks in our top level which assign final

colors which could have been included in our Colors module.

4. Conclusions

Our project successfully reached our goal of allowing the user to draw an image like the classic
Etch-a-sketch but in a digital version. As a bonus, our Etch-a-sketch allows you to change colors,
even to black so that you can erase or move across the screen without a mark, and reset the
screen with a button to start all over again. While we changed our design along the way, most
notably our initial rotary encoder controller, VGA controller logic and Block RAM, we think the
result is much improved from our initial design. We would recommend future groups to test each
section of their code as each part is built, to avoid dealing with lots of issues at once after
building the whole game. In general, starting as early as possible is useful since it is hard to
predict how much time it will take to fix bugs that come up.

5. Acknowledgements

We would like to thank Professor Hansen for all of his advice and patience during our time
designing and coding our project as well as with his guidance when it came to debugging our
code. We would also like to thank Dave for all of his patience throughout the project as well as
throughout labs this entire term. We would also like to thank all the learning fellows and lab TAs
that spent countless hours in the digital lab towards the end of the term helping us reason through
a lot of the logic from our device. A huge thanks to Ruthie for being our assigned learning fellow
who was always available to offer us guidance on bugs we ran into later on in the construction

process.

10

In general, we worked together whenever possible in terms of writing code so that we would
both understand the project and all of its functional blocks. Most of our design process was done
together from the block diagrams to the rotary encoder state diagram. Both members of the team
were present throughout most of the code writing process and through the debugging process.
Himadri produced most of the code for the Pixelcalc and Colors modules and Ali worked on
writing the testbenches for testing the modules. The top modules and the rotary encoder
controller were written by both. Most of the work that was put into the project, in terms of hours,
was done together. Throughout the testing processes, we consulted each other for advice.

6. References

Our code also has comments where references were included. Most of our code was only
referencing previous labs and lectures from Professor Hansen. We consulted Professor Hansen’s
VGA controller code as well when we ran into some bugs with our own. For our Debouncer
module, we sought outside references from Yourigh on Github who had provided a rotary

encoder debouncer which we modified for our project.

11

Appendices

ENGS 31: Digital Electronics
Digital Etch-a-Sketch
Alison Hagen and Himadri Narasimhamurthy

12

Appendix A: Annotated Photo

VGA Connector

Basys3 Board

TR oo lear Button

PMOD Encoders

Center in cluster
Color Switches B

From left to right (8) -

Cavs oo

13

Appendix B: Top Level Block Diagram

FPGA Board

right_top ———»
left_ top ——»|
up_top —»
down_top———»
sw_blk ——»f
sw_red——»
sw_yel ——»
SW_grn———»|
sw_blu——
SW_cyn———»
SW_mag——»
SW_wWht——»

clr_top——»

clk———>>

—— > Hsync

— Vsync

—» color

14

Appendix C: Modular Block Diagram

Board Top

—
®

ub

Debouncer_1A —

Debouncer_1B |,

RL)|

Debouncer_2A

Debouncer_2B —

J3]|0J1u0) Japodu] Aleroy

incx_en
pnex_en
decx_en
SRS

incy_en

decy en

PixelCalc

sw_blk

sw_red

sw_yel

sw_grn

Colors

sw_blu

sw_cyn

sw_mag

sw_wht

clr_top—

4-bit mem_color

VGAController

Hsync

Vsync

12-bit color

clr

> >
o3 o
x x
z s
a °
3 <
- -~

BRAM

4-bit mem color

VGA Display

15

Appendix D: Rotary Encoder State Diagram

Hold2B

16

Appendix E: Parts List
*We make the assumption that the FPGA has the program written on it already — no need to
download the bitstream™

Reference Quantity | Part Number Description

Basys 1 Basys3 The FPGA Board

Digilent 2 PModEnc The rotary encoders

VGA Screen 1 VGA Screen Display screen

VGA Connector Cable | 1 n/a Connects the VGA to the Basys board
VGA Power Cord 1 n/a Connects VGA to power outlet

Datasheet for PMOD Rotary Encoders

Appendix F

; o P —— 5
€j0z 3924 " qAsup 8 Saados

PANIDS) SIS I 201 WUANHi

"3Uly J40M ||IM Indul e3P e se 3|puey ued pJeoq WaisAs anoA jeyy adejjon Aue ‘powqd
33 UO 5321 Pa3eJFa3ul Ou 318 3I3Y3 ISNEIaq YFNOY3|e ‘AG JO AE'E 18 P3ILIdO SI POUId 18U} PIPUSWWIOIII §1 3]

(AS/g'€) Aiddns Jamod 3Aisod 2D 9

punoig Ajddng Jamog ans S|

Y23Ms pJeoq uo ays jo IndinQ ims 14

3jBYs Japo2Ud 3y3 U uonNg ysnd [eia3ul Y3 Jo INdINO N18 3
3BYs J9POIU3 3L U1 g LORNG 4O INdINO] 4

3BYS JAPOUA 3 U] ¥ UORING Jo INdINO v I

[onua [jeuls|
e|qel uogduossaqg nould 1’2

‘g puo v sndsno fo Bujwis "z unbl3

248 erwios @ se popoosp 5
8450 15 ¥ Jo 365 Bumng

|:._ 2 _.u.
A
\iL

D RS

*pa31e304 BuIaq 1 JBYS 3y} UOIIIAIIP YIIYM INO 34n813 03 J3PJO Ul (p3inided Osje Jou 3Je S, [BUORIPPE 34NSU3 O}
3wely 3w [[EWS B UIYIM) 358] MO| P3|INd SBM U0JING YIIYM BUILIIIP 03 SPIR0q WasAs J1ay} weidold ued siasn

“Aninaua 13po3ua yfoys Aijoy °T 24nbig

aNo

1epoouz
yeys Aejoy

= W/

*UORNG J3Y30 3Y3 340434 3Fe3|OA 343 2130] MO] B
03 p3||nd aq M uonng 3uo Fuejod s 3eys 3yl AIYM ‘(3njespenb ul '3'1) J3YI0 Yyoea wouy $33.83p 06 PaIed0| e

SUOJING OM] 3Y3 SY "103sIsa dn-|ind e y3nouy) |2A3] yFiy 2130| e 03 pa|nd A|2AIIRU Y30g 31 SUCLING [BUIIUI OM) 3Y]

ANFUOIAY fenuei 23u312;2Y nINIPOWA

€40 T o884 900 SN2 U J0 SHESPL G Aew Bouoriuos sodues Aveduod pus npox 00 LT1-20S :#700

"$31835 (Y23IMS 3Y3 JO 35BD 3Y3 U] 430 JO) 3AIBU J13y3 ul 3Fe3jon moj J130] &

18 Y2UMS 3PI|S 3y} pue UonNQ ysnd [e333u] Y3 Pea ||IM PJROq WIISAS Y "YIIIMS 3PIjS 3Y3 PUB JRYS BY3 UO UoRNg
ysnd [es333ul 3Y3 SE ||3M SE JAYI0 YIS Y3IM 3INJRpeNnb U] 348 Jey3 JAPOIUS AU} O3 [BUIB}IUI SUORING OM] AU} ‘pieoq
waisAs ay3 03 syndul Jnoj sapiaoid 3| *|030304d 014D Y3 BIA PJEOq ISOY 3Y3 YIIM SIIBIIUNWILIOD DNIPOWd Y|

powd au3 yum Bupeusiu] Z

‘pouwd 3|qesnduod Ajy3iy e Joj MO|[e YoumMS
3PIIS B SE ||3m SB jeys 3y} uo uoRNg-ysnd [eFa3u| Uy 'spaads S1030W PauyaPaLd JO UIIIDS B UO UMOYS S3DI0YD
se Yans suondo 3|di N UIIMIG Y23IMS APFIIND 03 135N Joj Aem e Se J3podU3 Jjeys AJe3ol e $3zi|in INIPOWd YL

uonduosaq Jeuogouny |

IN3PoUwd YL
TS IIMOSST

3|qejieAe apod 3jdwexa pue AJeJ
T 3dA] uonesypads
3Je33U] powd UIIBIQ SMOJ[0] «
20BJI33U1 014D Y¥m 1od powd uid-g e
(w207 xWIg'g) uI g0
X Ul §'T SuBisap 3|qIXal} 10§ 32IS D4 |lews e
Y2IIMS 3DI|S 18IS |BUORIPPY @
123(0ud Jo pieoq
150y 03 Indul Jasn jo sadAy 3|diINW ppyY e
13POJUR Yeys uonng-ysnd Aleloy e

:3pnpu| sainjeay ey

"P31eI0J UG SEY GOUY B S, AU MOY 19313p 03 SGOuY 3wn|oA Sunejos Aj3a14 ui pasn Ajuowwod
S143p02U3 Uy "INAIN0 JJ0/UC UE Se pasn Ajuowwod si 1.yl Yaams Bulplls e sapnjaul os|e 3jnpow ay] ‘sindino
Jo sadAy ajdnnw apiaosd 03 uonng-ysnd [eiFajul U YIIM JBPODUS Jeys Aejol B S3INea) INIPOUd u3|iBig ayL

MIIAIBAQ

W "Aal DNTPOlLd au o} saiidde [enuew siy |
9102 ‘Z} Iudy pesinay

[enuepy 20uaIY ,, INIPOW

LUCODURUBIEP MM

s ANITOIAY

10D ASNUBH O0ET

18

Appendix G: Memory Map
Saved Information — Mem color
A four bit color code is saved into the address. It is dependent on the switch that is up and ranges

from 0000 to 0111 each of which is decoded into a color which is fed into the VGA at the level
of the constraints file.

Saved Address — Location

The pixel is saved at a location in the block ram that is fed in after PixelCalc when we
concatenate the x vector location and the y vector location into a 17 bit code. This is read back
out from memory according to the VGA controller’s concatenated x and y vectors and colors are
assigned.

X X X X X X X X X y y y y y y y y

19

1Calc Module

1Xe

: Waveform — P

Appendix H

‘panndur a1e s[eUSIS 9[qRUS J9P PUB OUI Y} UAYM AJUO JUIUWIAIIAP JO JUWIOUT
SIUNOJ Y, *o1eD[XId Jo Anfeuonouny 1adoxd ay) 99s 01 9[qe I8 9M ‘WLIOJIABM FUIMO[[O] Y} U]

121

02T

nzT

W oest Y

85T b

65T

03T

1

1

|

|_|_|_||_J|_||_|_|_|L|_|_||_|_L|L|_L||_|_L||_|_L||_|_|_|L|_|_||ﬂ

su 002

su 08T

su 097

su 0pT

su 027

su 00T

su 08

su 09

su 0

su 02

0e
6%

anjep

L
L

o o o o o

[0:2h 8 <

[0:8]x 8 <
ua—AJ8p 9
uaTy28p 9
ua—Aoul &
ua youl &
A0 &)

awep

20

‘saye)s proy eudoidde
y3noayy 03 s[eusIs g pue y 9yl [uUn pard33Ly J0u dIe A3y) pue pasindouowr a1e s[eugIs
Indino 9y, ‘9[npOoW IJ[[OIUO)) JIPOIUH AIe}0Y) UI Sjels Jo uonisuer} sadoid oy smoys sy,

Waveform — Rotary Encoder Controller

alejs xau @
ajejs™uno &,
A1

ua oap &
uaoul &

g Digiapoous &,

7 v BIsIapoous|e;

(o YaerTouyazeTowateTon) sTPT W 0 yvepTodyvzpTowy TR TOW; STPT 3 0 YaepTodyazeTowyaTeTow) STPT
gEPTOWY aZPTowy aTRTou) 2TPT ¥ our YwepTowywzRTouyYTRTOW) aTPT ¥ =P Y aepTowyazpTouyaTRToW) 3TPT ¥ o
[

— [[
SJHEHEE | _ | |
= | [| |
m 00z su 08T su 09T su 0BT su 02T su 00T su g su 03 su 0 su 0z su g
(=%
<«

anjep

awep

21

Appendix J: Waveform — VGA Controller

Name m 636 ns 638 ns 640 ns 642 ns 644 ns 646 ns 648 ns 650 ns 652 ns 654 ns 656 ns
T T

1% vsync 1

1% Hsyne 1

1% video_on 0
> 9§ pixel_x9:0] 643 636 637 638 639 640 641 caz j{ e43) ea4 645 X 646 647 648 649 650 651 652 653 654 655 656 657 A0
> 9§ pixel_y[8:0] 0
1% H_video_on 0
(6 Voideoon 1 5—

0

1% h_complete

ll.nme 742 ns 744 ns 746 ns 748 ns 750 ns 752 ns 754 ns 756 ns 758 ns 760 ns 762 ns

13
'y Vsync
1% Hsync

1% video_on 0

> % pixel_x|9:0] 643 _, 753 X 754
> 9§ pixel_y[8:0] 0
1% H_video_on 0
1

0

0

1% V_video_on
1% h_complete

Name 792 ns 794 ns 796 ns 798 ns 800 ns 802 ns 804 ns 806 ns 808 ns 810 ns 81z

1% Vsync
1% Hsync
1% video_on
> 2§ pixel_x[9:0] 643 731 %792 793 794 735 796 797 798 793 o 1 Kz {3 X a A s 8 9 10 11 12 4 1z
> 9§ pixel_y[8:0]
1% H_video_on
1% V_video_on
1% h_complete

ISR

o 4 o o

These are the waveforms from our VGA Controller testbench. As we can see, they match the
waveform in the notes about the VGA controller as Hsync and Vsync correspond to the proper
values and video_on is accurate and dependent on H and V video_on signals.

22

Appendix K: Residual Warnings and Explanations

TclConsole | Messages X Serial /O Links | Serial /O Scans

- -~ >» .
Q = 2 Y, = ©@Eror(1) 7/) Warning (18) © Info (178) @ status (253) Show All

> s blivado Commands (4wamings)|

v 4 Synthesis (14 warnings

v & synth_1 (14 warnings

v [Synth 8-6014] Unused sequential element counter_out_reg was removed. [Debouncervhd:63] (12 more like this
[Synth 8-6014] Unused sequential element x_int_reg was removed. [PixelCalc.vhd:66]
[Synth 8-6014] Unused sequential element y_int_reg was removed. [PixelCalc.vhd:85]
[Synth 8-6014] Unused sequential element H_CNT_reg was removed. [VGAController.vhd:49]
[Synth 8-6014] Unused sequential element V_CNT_reg was removed. [VGAControllervhd:61]
[Synth 8-6014] Unused sequential element board/cir_reg was removed. [BoardTop.vhd:105]
[Synth 8-6014] Unused sequential element board/debouncer_A1/counter_out_reg was removed. [Debouncervhd:63]
[Synth 8-6014] Unused sequential element board/debouncer_A2/counter_out_reg was removed. [Debouncervhd:63]
[Synth 8-6014] Unused sequential element board/debouncer_B1/counter_out_reg was removed. [Debouncervhd:6

[Synth 8-6014] Unused sequential element location/x_int_reg was removed. [PixelCalc.vhd:66]
[Synth 8-6014] Unused sequential element location/y_int_reg was removed. [PixelCalc.vhd:85]

[Synth 8-6014] Unused sequential elementvga/H_CNT_reg was removed. [VGAControllervhd:49]
[Synth 8-6014] Unused sequential elementvga/V_CNT_reg was removed. [VGAControllervhd:61]

The only warnings that were left were the above warnings about unused registers being removed.
After consulting with Professor Hansen, we were able to confirm that these were not affecting
our code and that the values were still being used and incrementing properly even though Vivado
claimed to have removed the registers.

23

Appendix L: Usage Report

! 1. Slice Legic

o W

WoWw oW W wwN N

2,1 Site Type | Used | Fixed | Available | Utils |
4| Slice LUTs | 261 | 01 20800 | 1.25 |
5.1 LUT as Legic | 261 | 01 20800 | 1.25 |
36| LUT as Memory | 01 01 9600 | 0.00 |
37 | | Slice Registers | 185 | 01 41600 | 0.44 |
321 | Register as Flip Flop | 185 | 01 41600 | 0.44 |
391 Register as Latch | 0| 0| 41600 | 0.00 |
40 1 | F7 Muxes | 01 01 16300 | 0.00 |
41 | F2 Muxes | 01 01 8150 | 0.00 |
42
43
44
3. Memory
+ + + + + +
| Site Type | Used | Fixed | Available | Utils |
+ + + + + +
Block RAM Tile	10	01 50	20.00	
RAMB36/FIFO*	10	01 50	20.00	
RAMB36El only	10			
RAMB1E	01 01 100	0.00		
+ + + + + -
173 .
174 8. Primitives
175 | mmmmmmmmm e
176
177 1 + + + +
178 | Ref Name | Used | Functional Category |
179 + + + +
180 + | LUT2 | 231 | LUT |
121 | FDRE | 183 | Flop & Latch |
182 | | CARRY4 | 52 | CarryLogic |
183 ' | LUTS | 34| LUT |
184 | | LUT4 | 29| LUT |
185 | LUT1 24 LUT |
186 | | LUT3 | 23 | LUT |
187 1 | LUT6 22 LUT |
188 ! | OBUF | 14 | I0 |
189 . | IBUF | 14 | I0 |
190 ' | RAMB36EL | 10 | Block Memory |
191 | | FDCE | 2| Flop & Latch |
192 1 | BUFG | 2| Clock |
193+ + + +
194 .
195!

Appendix M: VHDL Code — Rotary Encoder Controller

—— Company:
—— Engineer: himadri narasimhamurthy and ali hagen

—— Create Date: 08/13/2018 01:55:29 PM

—— Design Name:

—— Module Name: RotaryEncoderController - Behavioral
—— Project Name:

—— Target Devices:

—— Tool Versions:

—— Description:

—— Dependencies:
—— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values
—-—use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating
—— any Xilinx leaf cells in this code.

——1library UNISIM;

——use UNISIM.VComponents.all;

entity RotaryEncoderController is

Port (
clk : in std_logic;
encoderSig_A : in std_logic;
encoderSig_b : in std_logic;
inc_en : out std_logic;
dec_en : out std_logic
);

end RotaryEncoderController;

architecture Behavioral of RotaryEncoderController is

——state types

type state_type is (inc, dec, idle, holdlA, hold1B, hold2A, hold2B, hold3A, hold3B);

signal curr_state, next_state: state_type;
begin

——controller
state_update : process (clk)
begin
if rising_edge(clk) then
curr_state<= next_state;
end if;
end process;

comb_logic : process (clk, encoderSig_A, encoderSig_B, curr_state)

25

begin

next_state<=curr_state;
dec_en <= '0';
inc_en <= '0"';

case curr_state is
when idle =>
inc_en <= '0';
dec_en <= '0';
if encoderSig_A = '@' then
next_state <= holdlA;
elsif encoderSig_B = '0' then
next_state <= hold1B;
end if;
when inc => inc_en <= '1';
next_state<= idle;
when dec => dec_en <= '1';
next_state<= idle;
when holdlA =>
if encoderSig_A = '1' then
next_state <= idle;
elsif encoderSig_B = '0' then
next_state <= hold2A;
end if;
when hold1lB =>
if encoderSig_B = '1' then
next_state <= idle;
elsif encoderSig_A = '0' then
next_state <= hold2B;
end if;
when hold2A =>
if encoderSig_A = '1' then
next_state <= hold3A;
elsif encoderSig_B = '1' then —-blip
next_state<= idle;
end if;
when hold2B =>
if encoderSig_B = '1' then
next_state <= hold3B;
elsif encoderSig_A = '1' then —-blip
next_state<= idle;
end if;
when hold3A =>
if encoderSig_B = '1' then
next_state <= inc;
elsif encoderSig_A = '0' then
next_state <= idle;
end if;
when hold3B =>
if encoderSig_A = '1' then
next_state <= dec;
elsif encoderSig_B = '0' then
next_state <= idle;
end if;
end case;
end process;

end Behavioral;

26

Appendix N: VHDL Code — Debouncer Module

—— Engineer: modified by Himadri Narasimhamurthy and Ali Hagen
—— modified an online debouncer from Yourigh on Github

—— Create Date: 08/16/2018 08:45:33 PM
—— Design Name:

—— Module Name: Debouncer - Behavioral
—— Project Name:

—— Target Devices:

—— Tool Versions:

—— Description:

—— Dependencies:
—— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values
—-—use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating
—— any Xilinx leaf cells in this code.

——1library UNISIM;

——use UNISIM.VComponents.all;

entity Debouncer is

PORT (clk : in std_logic;
initial : in std_logic; ——non debounced inputs
db_result : out std_logic
); -—-debounced outputs

end Debouncer;

architecture Behavioral of Debouncer is
signal flipflop: std_logic_vector(1l downto 0);

signal counter_set: std_logic;

constant counter_size : integer := 10;
signal counter_out : std_logic_vector(counter_size downto @) := (others => '0');
begin

counter_set <= flipflop(@) xor flipflop(1);
debounce : process(clk)

begin
if (clk'event and clk = '1') then
flipflop(@) <= initial;
flipflop(1) <= flipflop(0);

if (counter_set = '1') then
counter_out <= (others => '0');

elsif (counter_out(counter_size) =
counter_out <= counter_out + 1;

else
db_result <= flipflop(1);

end if;

end if;

end process;

end Behavioral;

'9') then

28

Appendix O: VHDL Code — Board Top Level

—— Company:
—— Engineer: Ali Hagen

—— Create Date: 08/16/2018 10:32:31 PM
—— Design Name:

—— Module Name: TOP - Behavioral

—— Project Name:

—— Target Devices:

—— Tool Versions:

—— Description:

—— Dependencies:
—— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values
——use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating
—— any Xilinx leaf cells in this code.

——1library UNISIM;

——use UNISIM.VComponents.all;

entity BoardTop is
Port (clk : in std_logic;
RL_inc : in std_logic;
RL_dec : in std_logic;
UD_inc : in std_logic;
UD_dec : in std_logic;
rst : in std_logic;
up : out std_logic;
down : out std_logic;
left : out std_logic;
right : out std_logic;
clr : out std_logic
)3
end BoardTop;

architecture Behavioral of BoardTop is

Component Debouncer is
Port (clk : in std_logic;
initial : in std_logic;
db_result : out std_logic);
end component;

Component RotaryEncoderController is
Port (clk : in std_logic;
encoderSig_A : in std_logic;

encoderSig_b : in std_logic;

inc_en : out std_logic;

dec_en : out std_logic);
end component;

—— intermediate signals
signal dbAl, dbA2, dbB1, dbB2 : std_logic;

begin

—— debounce the signals rom all of the rotary encoders
debouncer_A1 : Debouncer port map (
clk => clk,
initial => RL_inc,
db_result => dbAl);
debouncer_A2 : Debouncer port map (
clk => clk,
initial => RL_dec,
db_result => dbA2);
debouncer_B1 : Debouncer port map (
clk => clk,
initial => UD_inc,
db_result => dbB1);
debouncer_B2 : Debouncer port map (
clk => clk,
initial => UD_dec,
db_result => dbB2);

encoder_A : RotaryEncoderController port map (
clk => clk,
encoderSig_A => dbA1l,
encoderSig_b => dbA2,
inc_en => right,
dec_en => left);
encoder_B : RotaryEncoderController port map (
clk => clk,
encoderSig_A => dbB1,
encoderSig_b => dbB2,
inc_en => up,
dec_en => down);

clear_proc: process(clk)
begin
if (rising_edge(clk)) then
clr <= '0"';
if rst = '1' then
clr <= '1"';
end if;
end if;
end process clear_proc;

end Behavioral;

Appendix P: VHDL Code — Colors Module

—— Company:

—— Engineer: Himadri Narasimhamurthy

—— Create Date: 08/18/2018 ©03:14:17 PM

—— Design Name:

—— Module Name: Colors - Behavioral

—— Project Name:
—— Target Devices
—— Tool Versions:
—-— Description:

—— Dependencies:

—— Revision:

—— Revision 0.01 - File Created

—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values

—--use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating

—— any Xilinx leaf cells in this code.

——1Llibrary UNISIM;

——use UNISIM.VComponents.all;

entity Colors is
Port (

sw_red:
sw_yel:
sw_grn:
sw_blu:
sw_cyn:
sw_mag:
sw_wht:
sw_b1lk:
—final_

);
end Colors;

architecture Behavioral of Colors is

begin

color_proc: process(sw_red, sw_yel,sw_grn, sw_blu, sw_cyn,

begin

in
in
in
in
in
in
in
in

color: out std_logic_vector(1l downto 0);
mem_col: out std_logic_vector(3 downto @)

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

if sw_red = '1' then

——final_color<= "111100000000";

mem_col <= "0000";
elsif sw_yel = '1' then

——final_color<= "111111110000";

mem_col <= "Q001";

sw_mag, sw_wht, sw_blk)

31

elsif sw_grn = '1' then
——final_color<= "000011110000";
mem_col <= "0010";

elsif sw blu = '1' then
——final_color<= "000000001111";
mem_col <= "0011";

elsif sw_cyn = '1' then
——final_color<= "000011111111";
mem_col <= "0100";

elsif sw_mag = '1' then
——final_color<= "111100001111";
mem_col <= "0101";

elsif sw wht = '1' then
——final_color<= "111111111111";
mem_col <= "0110";

elsif sw _blk = '1' then
——final_color <= "000000000000";
mem_col <= "Q111";

else
——final_color<= "111111111111";
mem_col <= "0110";

end if;

end process color_proc;

end Behavioral;

Appendix Q: VHDL Code - PixelCalc Module

—— Company: EtchASketch
—— Engineer: Himadri Narasimhamurthy

—— Create Date: 08/16/2018 09:49:52 PM
—— Design Name:

—— Module Name: PixelCalc - Behavioral
—— Project Name:

—— Target Devices:

—— Tool Versions:

—— Description:

—— Dependencies:
—— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
——use IEEE.std_logic_arith.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating
—— any Xilinx leaf cells in this code.

——1library UNISIM;

——use UNISIM.VComponents.all;

entity PixelCalc is
Port (
clk: in std_logic;
incX_en: in std_logic;
incY_en: in std_logic;
decX_en: in std_logic;
decY_EN: in std_logic;

—— 2 pixel width

x: out std_logic_vector(8 downto 0); ——binary of 320 (101000000)

y: out std_logic_vector(7 downto 0)); ——binary of 240 (11110000)
end PixelCalc;

architecture Behavioral of PixelCalc is

——intermediate location signals
signal x_int: std_logic_vector(8 downto 0)
signal y_int: std_logic_vector(7 downto 0)

"010100000"; —— 160
"01111000"; -—- 120

begin

calculateX: process(clk)

33

begin

if rising_edge(clk) then
——if (vid_on = '1') then
if ((decX_en) = '1') then
if (x_int+2 < 320) then
x_int <= x_int + 1;
end if;
elsif (incX_en) = '1' then
if (x_int > @) then
x_int <= x_int - 1;
end if;
end if;

x<= std_logic_vector(unsigned(x_int));
—end if;
end if;
end process calculateX;

calculateY: process(clk)
begin

if(rising_edge(clk)) then
——if (vid_on = '1') then
if ((incY_en) = '1') then

if (y_int+2 < 240) then
y_int <= y_int + 1;
end if;
elsif ((decY_en) = '1') then
if (y_int > @) then
y_int <= y_int - 1;
end if;
end if;

y<= std_logic_vector(unsigned(y_int));
— end if;
end if;
end process calculateY;

end Behavioral;

34

Appendix R: VHDL Code — VGA Controller

—— Code your design here
library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY VGAController IS

PORT (vclk : in STD_LOGIC; --100 MHz clock
Vsync : out STD_LOGIC;
Hsync : out STD_LOGIC;
video_on: out STD_LOGIC;
pixel_x : out STD_LOGIC_vector(9 downto 0);
pixel_y : out STD_LOGIC_VECTOR(8 downto 0));

end VGAController;

architecture behavior of VGAController is

——video on signals
signal H_video_on : STD_LOGIC :
signal V_video_on : STD_LOGIC :

lll;
|1|;

——internal signals to determine when last Hsync went
signal h_complete : STD_LOGIC := '1l'; —-used to take place of rising_edge(H_sync)

——VGA Constants

constant left_border : integer := 48;
constant h_display : integer := 640;
constant right_border : integer := 16;
constant h_retrace : integer := 96;

constant HSCAN : integer := left_border + h_display + right_border + h_retrace - 1; —
number of PCLKs in an H_sync period

——counts

signal H_CNT : integer:= 0;

signal V_CNT : integer:= 0;

constant top_border : integer := 29;

constant v_display : integer := 480;

constant bottom_border : integer := 10;

constant v_retrace : integer := 2;

constant VSCAN : integer := top_border + v_display + bottom_border + v_retrace - 1; —

number of H_syncs in an V_sync period
BEGIN

hCounter: process(vclk)
begin
if rising_edge(vclk) then
if (H_CNT < HSCAN) then
H_CNT <= H_CNT + 1;
else
H_CNT <= 0;
end if;
end if;
end process hCounter;

vCounter: process(vclk)

35

begin
if rising_edge(vclk) then
if (H_complete = '1') then —— works as rising clk on h
if (V_CNT < VSCAN) then
V_CNT <= V_CNT + 1;
else
V_CNT <= 0;
end if;
end if;
end if;
end process vCounter;

H_Logic: process (H_CNT)
begin

pixel_x <=STD_LOGIC_VECTOR(to_unsigned(H_CNT, 10));

if (H_CNT>= h_display) and (H_CNT <HSCAN) then
H_video_on <= '0';

else H_video_on <= '1"';

end if;

if (H_CNT >= h_display + right_border) and (H_CNT <HSCAN-left_border) then
Hsync <= '0';

else Hsync <= '1';

end if;

if (H_CNT = HSCAN) then

H_complete <= '1"';
else H_complete <= '0"';
end if;

end process H_Logic;
—-V_sync generating process
Vert_logic : process(V_CNT)
begin
pixel_y <=STD_LOGIC_VECTOR(to_unsigned(V_CNT,9));
if (V_CNT >= v_display) and (V_CNT<VSCAN) then
V_video_on <= '0';
else V_video_on <= '1"';
end if;
if (V_CNT >= v_display + bottom_border) and (V_CNT < VSCAN-top_border) then
Vsync <= '0';
else Vsync <= '1';
end if;
end process Vert_logic;

video_on <= H_video_on AND V_video_on;

end behavior;

36

Appendix S: VHDL Code — Top Level

—— Company:
—— Engineer: Himadri Narasimhamurthy and Ali Hagen

—— Create Date: 08/20/2018 01:54:30 PM
—— Design Name:

—— Module Name: Top - Behavioral

—— Project Name:

—— Target Devices:

—— Tool Versions:

—— Description:

—— Dependencies:
—— Revision:

—— Revision 0.01 - File Created
—— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM; —— needed for the BUFG component
use UNISIM.Vcomponents.ALL;

—— Uncomment the following library declaration if using
—— arithmetic functions with Signed or Unsigned values
——use IEEE.NUMERIC_STD.ALL;

—— Uncomment the following library declaration if instantiating
—— any Xilinx leaf cells in this code.

——1Llibrary UNISIM;

——use UNISIM.VComponents.all;

entity Top is
Port (
clk: in std_logic;
right_top, left_top, up_top, down_top : in std_logic;
switch_red: in std_logic;
switch_yel: in std_logic;
switch_grn: in std_logic;
switch_blu: in std_logic;
switch_cyn: in std_logic;
switch_mag: in std_logic;
switch_wht: in std_logic;
switch_blk: in std_logic;
clr_top : in std_logic;
Hsync: out std_logic;
Vsync: out std_logic;
color: out std_logic_vector(11l downto 0)
);
end Top;

architecture Behavioral of Top is

COMPONENT blk_mem_gen_0 is

PORT (

clka :
wea

IN STD_LOGIC;
IN STD_LOGIC_VECTOR(@ DOWNTO 0);

addra : IN STD_LOGIC_VECTOR(16 DOWNTO 0);

dina :

IN STD_LOGIC_VECTOR(3 DOWNTO 9);

douta : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

clkb :
web :

IN STD_LOGIC;
IN STD_LOGIC_VECTOR(@ DOWNTO 0);

addrb : IN STD_LOGIC_VECTOR(16 DOWNTO 0);

dinb :

IN STD_LOGIC_VECTOR(3 DOWNTO 9);

doutb : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END COMPONENT;

Component BoardTop is
Port(

);

clk : in std_logic;
RL_inc : in std_logic;
RL_dec : in std_logic;
UD_inc : in std_logic;
UD_dec : in std_logic;
rst : in std_logic;
up : out std_logic;
down : out std_logic;
left : out std_logic;
right : out std_logic;
clr : out std_logic

end component;

Component Colors is
Port(

);

sw_red: in std_logic;
sw_yel: in std_logic;
sw_grn: in std_logic;
sw_blu: in std_logic;
sw_cyn: in std_logic;
sw_mag: in std_logic;
sw_wht: in std_logic;
sw_blk: in std_logic;

——final_color: out std_logic_vector(11l downto 0);

mem_col: out std_logic_vector(3 downto 0)

end component;

Component PixelCalc is
Port(

);

clk: in std_logic;

incX_en: in std_logic;
incY_en: in std_logic;
decX_en: in std_logic;
decY_EN: in std_logic;

-— 2 pixel width
x: out std_logic_vector(8 downto 0);

——binary of 320 (101000000)

y: out std_logic_vector(7 downto @) ——binary of 240 (11110000)

end component;

Component VGAController is
Port(

38

vclk : in STD_LOGIC; —--25 MHz clock
Vsync: out STD_LOGIC;
Hsync: out STD_LOGIC;
video_on: out STD_LOGIC;
pixel_x: out std_logic_vector(9 downto 0);
pixel_y: out std_logic_vector(8 downto 0)
);
end component;

signal u_int, d_int, r_int, 1_int: std_logic;
signal loc_x_int: std_logic_vector(8 downto 0);
signal loc_y_int: std_logic_vector(7 downto 0);
signal pixloc: std_logic_vector(16 downto 0);

signal x: std_logic_vector(9 downto 0);
signal y: std_logic_vector(8 downto 0);
signal vgaloc: std_logic_vector(16 downto 0);
signal video_on: std_logic;

signal clr_int: std_logic;

—--signal color_int: std_logic_vector(11l downto 0);
signal mem_color_int: std_logic_vector(3 downto 0);
signal mem_color_fin: std_logic_vector(3 downto 0)
signal mem_color_t: std_logic_vector(3 downto 0);

:= "0111"; —- changed

signal wea_int : std_logic;
signal addra_int, addrb_int : std_logic_vector(16 downto 0);
signal dia_int, dob_int : std_logic_vector(3 downto 0);

constant SCLK_DIVIDER_VALUE: integer := 4/2; ——4/2

——constant CLOCK_DIVIDER_VALUE: integer := 5; —— for simulation

signal sclkdiv: unsigned(1l downto @) := (others => '0'); -- clock divider counter
signal sclk_unbuf: std_logic := '0Q'; —— unbuffered serial clock

signal divclk: std_logic := '0'; —— internal serial clock

signal num_intl : integer := 0;

signal num_int2 : integer := 0;

signal video_on_vect : std_logic_vector(@ downto @) := "Q";

signal clr_vect : std_logic_vector(@ downto @) := "0";

begin

—— Clock buffer for sclk
—— The BUFG component puts the signal onto the FPGA clocking network
Slow_clock_buffer: BUFG
port map (I => sclk_unbuf,
0 => divclk);

—— Divide the 100 MHz clock down to 2 MHz, then toggling a flip flop gives the final
—— 1 MHz system clock
Serial_clock_divider: process(clk)
begin
if rising_edge(clk) then
if sclkdiv = SCLK_DIVIDER_VALUE-1 then
sclkdiv <= (others => '0');
sclk_unbuf <= NOT(sclk_unbuf);
else
sclkdiv <= sclkdiv + 1;
end if;

39

end if;

end process Serial_clock_divider;

board: BoardTop po
clk => div
RL_inc =>
RL_dec =>
UD_inc =>
UD_dec =>

rt map(
clk,
right_top,
left_top,
up_top,
down_top,

rst => clr_top,
up => u_int,

down => d_
left => 1_

int,
int,

right => r_int,
clr => clr_int

);

location: PixelCal
clk => div
incX_en =>

incY_en =>
decX_en =>
decY_EN =>
—— 2 pixel

c port map(
clk,

r_int,
u_int,
1_int,
d_int,

width

x => loc_x_int,
y => loc_y_int

);

——swapped r and 1

——binary of 320 (101000000)

——pixel combined address for mem
pixloc <= std_logic_vector((unsigned(loc_x_int))) &
std_logic_vector((unsigned(loc_y_int)));

color_switches: Colors port map(

sw_red =>
sw_yel =>
sw_grn =>
sw_blu =>
sw_cyn =>
sw_mag =>
sw_wht =>
sw_blk =>

switch_red,
switch_yel,
switch_grn,
switch_blu,
switch_cyn,
switch_mag,
switch_wht,
switch_blk,

——final_color => color_int,
mem_col=> mem_color_int

);

vga: VGAController

port map(

vclk => divclk,

Vsync => V
Hsync => H

sync,
sync,

video_on => video_on,

pixel_x =>
pixel_y =>

X,
y)

vgaloc <= x(9 downto 1) & y(8 downto 1);

——extra signal to convert video_on to std_logic_vector
video_on_vect(0) <= video_on;
clr_vect(0) <= clr_top;

BRAM : blk_mem_gen
PORT MAP (

_0

clka => divclk,

40

);

wea => video_on_vect,

addra => pixloc, ——write address
dina => mem_color_int,

douta => mem_color_t,

clkb => divclk,

web => clr_vect,

addrb => vgaloc, ——todo

dinb => "0000",

doutb => mem_color_fin

color_proc : process(clk, video_on, mem_color_fin)
begin
if rising_edge(clk) then

end
end
end

if video_on = '1' then
if mem_color_fin = "0000" then
color <= '"000000000000"; —— black
elsif mem_color_fin = "0001" then
color <= "111100000000"; ——yellow
elsif mem_color_fin = "0010" then
color<= "000011110000"; -— green
elsif mem_color_fin = "0011" then
color<= '"000000001111"; ——blue
elsif mem_color_fin = "0100" then
color<= "Q00011111111"; ——cyan
elsif mem_color_fin = "0101" then
color<= "111100001111"; ——-magenta
elsif mem_color_fin = "0110" then
color<= "111111111111"; — white
elsif mem_color_fin = "0111" then
color <= "111111110000"; ——red
else color <= "111111111111";
end if;
else color <= "000000000000";
end if;
if;
process color_proc;
Behavioral;

41

Appendix T: VHDL Code — Constraints File

This file is a general .xdc for the Basys3 rev B board

To use it in a project:

- uncomment the lines corresponding to used pins

— rename the used ports (in each line, after get_ports) according to the top level
signal names in the project

Clock signal

#Bank = 34, Pin name = CLK, Sch name = CLK100MHZ

set_property PACKAGE_PIN W5 [get_ports clk]

set_property IOSTANDARD LVCMOS33 [get_ports clk]

create_clock —period 10.000 —name sys_clk_pin -waveform {0.000 5.000} -add [get_ports
clk]

Switches

set_property PACKAGE_PIN V2 [get_ports switch_blk]
set_property IOSTANDARD LVCMOS33 [get_ports switch_blk]
set_property PACKAGE_PIN T3 [get_ports switch_wht]
set_property IOSTANDARD LVCMOS33 [get_ports switch_wht]
set_property PACKAGE_PIN T2 [get_ports switch_mag]
set_property IOSTANDARD LVCM0S33 [get_ports switch_mag]
set_property PACKAGE_PIN R3 [get_ports switch_cyn]
set_property IOSTANDARD LVCMOS33 [get_ports switch_cyn]
set_property PACKAGE_PIN W2 [get_ports switch_blu]
set_property IOSTANDARD LVCMOS33 [get_ports switch_blu]
set_property PACKAGE_PIN Ul [get_ports switch_grn]
set_property IOSTANDARD LVCMOS33 [get_ports switch_grnl
set_property PACKAGE_PIN T1 [get_ports switch_yel]
set_property IOSTANDARD LVCMOS33 [get_ports switch_yel]
set_property PACKAGE_PIN R2 [get_ports switch_red]
set_property IOSTANDARD LVCM0S33 [get_ports switch_red]

#Buttons

#Bank = 14, Pin name = , Sch name = BTNC
set_property PACKAGE_PIN U18 [get_ports clr_topl
set_property IOSTANDARD LVCM0S33 [get_ports clr_topl

##Pmod Header JA - RL

##Bank = 15, Pin name = IO_LIN_TO_ADON_15, Sch name = JAl
set_property PACKAGE_PIN J1 [get_ports {right_top}]

set_property IOSTANDARD LVCMOS33 [get_ports {right_top}]

##Bank = 15, Pin name = IO_L5N_T@_AD9N_15,gh Sch name = JA2
set_property PACKAGE_PIN L2 [get_ports {left_top}]

set_property IOSTANDARD LVCMOS33 [get_ports {left_top}]

#Pmod Header JB - UD

#Bank = 15, Pin name = IO_L15N_T2_DQS_ADV_B_15, Sch name = JB1
set_property PACKAGE_PIN Al14 [get_ports up_topl

set_property IOSTANDARD LVCM0S33 [get_ports up_topl

###Bank = 14, Pin name = I0_L13P_T2_MRCC_14, Sch name = JB2
set_property PACKAGE_PIN A16 [get_ports down_top]

set_property IOSTANDARD LVCM0S33 [get_ports down_top]

##VGA Connector

##Bank = 14, Pin name = , Sch name = VGA_RO
set_property PACKAGE_PIN G19 [get_ports color[0]]
set_property IOSTANDARD LVCMOS33 [get_ports color[0]]
###Bank = 14, Pin name = , Sch name = VGA_R1

42

set_property PACKAGE_PIN H19 [get_ports color[1]]
set_property IOSTANDARD LVCMOS33 [get_ports color[1]]
###Bank = 14, Pin name = , Sch name = VGA_R2
set_property PACKAGE_PIN J19 [get_ports color[2]]
set_property IOSTANDARD LVCMOS33 [get_ports color[2]]
###Bank = 14, Pin name = , Sch name = VGA_R3
set_property PACKAGE_PIN N19 [get_ports color[3]]
set_property IOSTANDARD LVCMOS33 [get_ports color[3]]
###Bank = 14, Pin name = , Sch name = VGA_BO
set_property PACKAGE_PIN N18 [get_ports color[4]]
set_property IOSTANDARD LVCMOS33 [get_ports color([4]]
###Bank = 14, Pin name = , Sch name = VGA_B1
set_property PACKAGE_PIN L18 [get_ports color[5]]
set_property IOSTANDARD LVCMOS33 [get_ports color[5]]
###Bank = 14, Pin name = , Sch name = VGA_B2
set_property PACKAGE_PIN K18 [get_ports color[6]]
set_property IOSTANDARD LVCMOS33 [get_ports color[6]]
###Bank = 14, Pin name = , Sch name = VGA_B3
set_property PACKAGE_PIN J18 [get_ports color[7]]
set_property IOSTANDARD LVCMOS33 [get_ports color[7]]
##Bank = 14, Pin name = , Sch name = VGA_GO
set_property PACKAGE_PIN J17 [get_ports color[8]]
set_property IOSTANDARD LVCMOS33 [get_ports color[8]]
###Bank = 14, Pin name = , Sch name = VGA_G1
set_property PACKAGE_PIN H17 [get_ports color[9]]
set_property IOSTANDARD LVCMOS33 [get_ports color[9]]
###Bank = 14, Pin name = , Sch name = VGA_G2
set_property PACKAGE_PIN G17 [get_ports color[10]]
set_property IOSTANDARD LVCMOS33 [get_ports color[10]]
###Bank = 14, Pin name = , Sch name = VGA_G3
set_property PACKAGE_PIN D17 [get_ports color[11]]
set_property IOSTANDARD LVCMOS33 [get_ports color[11]]
###Bank = 14, Pin name = , Sch name = VGA_HS
set_property PACKAGE_PIN P19 [get_ports Hsync]
set_property IOSTANDARD LVCMOS33 [get_ports Hsync]
##Bank = 14, Pin name = , Sch name = VGA_VS
set_property PACKAGE_PIN R19 [get_ports Vsync]
set_property IOSTANDARD LVCMOS33 [get_ports Vsync]

set_property
set_property
set_property

set_property

set_property
set_property

BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]
CONFIG_MODE SPIx4 [current_design]

BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]

CONFIG_VOLTAGE 3.3 [current_design]
CFGBVS VCCO [current_design]

43

