

Digital Etch-a-Sketch

ENGS 31 Final Project Report

By: Alison Hagen and Himadri Narasimhamurthy

	 2

Abstract

For our final project, we created a digital Etch-A-Sketch. The device receives its input from two

rotary encoder modules which determine whether the user is drawing and in what direction (left,

right, up, or down), which is outputted to a VGA screen. The knob to the left of the FPGA board

controls the right (clockwise) or left (counterclockwise) movement and the one to the right

controls the up (clockwise) or down (counterclockwise) movement. Similar to the traditional

Etch-A-Sketch, we have an option to clear the screen with the input of a button and we have 8

color options for the drawing occurring on the screen, determined by switches.

	 3

Table of Contents

1. Introduction …………………………………………………………………………… 4

2. Design Solution ………………………………………………………………………... 4

2.1. Design Specifications …………………………………………………………. 4

2.2. Operating Instructions ………………………………………………………… 4

2.3. Theory of Operation …………………………………………………………... 5

2.4. Construction and Debugging ………………………………………………….. 8

3. Justification and Evaluation ……………………………………………………………….. 9

4. Conclusion ………………………………………………………………………………… 10

5. Acknowledgements ……………………………………………………………………….. 10

6. References ………………………………………………………………………………… 11

7. Appendices ………………………………………………………………………………… 12

	 4

1. Introduction

The goal of our project is to build an Etch-a-sketch game where a user can turn knobs to draw an

image. The input from one rotary encoder knob directs the horizontal direction of the drawing

path and another directs the vertical direction. The user can also choose from a variety of colors

that will change based on the selected switch input to make their drawing. In order to clear the

drawing and start again on a blank background, the user can press the reset button.

2. Design Solution

2.1 Design Specifications

Our project takes input from the user in through turns of the two rotary encoder knobs to

determine pixel drawing position, eight switches for colors, and one button to reset the game.

The output is drawn on a VGA screen. Therefore, an FPGA with two attachment PMOS

Encoders, 8 switches and one button are required for input and a VGA is required for output. See

Appendix A for an image of our working device and Appendices B and C for block diagrams of

the final design.

2.2 Operating Instructions

First, connect the FPGA (with two rotary encoders attached to the PMOD locations JA and JB)

to a VGA with the connector and plug in the VGA. The knob on the left determines horizontal

position and the knob on the right determines vertical position. Each click or step turned on the

knob will result in an increment (when turned to the right) or a decrement (when turned to the

left) of the pixel coordinate. To change the color at any point, the user can flip up one switch at a

time. There are eight switches and each one reflects a different color. If multiple switches are up

at the same time of drawing, the colors have precedence from the leftmost to the rightmost, so

	 5

they will draw in the color of the leftmost switch which is up. Every line drawn on the screen

will appear connected unless the user switches to black (leftmost switch) and moves to a new

location; black can also be used like an eraser. The user may turn the knobs as much as they want

before pressing the reset button which will clear the drawing and return to a black screen with

the “pen” location at the same spot as it was before the clear.

2.3 Theory of Operation

Our circuit works as follows (in depth explanations of the modules are located in this section):

When the user turns the rotary encoders, the signals are fed through debouncers and then into a

controller which outputs signals to our circuit signaling if the pixel coordinates’ values should

increase or decrease. Then the circuit changes the color of the new pixel drawing position to

whichever one is selected through the switches through saving the pixel’s location as the address

in the block RAM and the color code as the information. The single switch that is selected of the

8 switches corresponds to a specific color for the outputted pixels.

Debouncer

The first step in our design is debouncing the rotary encoder signals since, from the

beginning of the project, we had heard about the noisiness of the encoders. Therefore, we

fed each signal, the A and the B from each rotary encoder, through its own respective

debouncer. The debouncer, for which code can be found in Appendix N, worked by

running the input through a series of flip flops while a counter ran. This allowed for us to

get smooth signals which we could then feed into our controller.

Rotary Encoder Controller

This became the most important step in deciphering our rotary encoder signals. As

mentioned in Appendix F, the PMODEnc modules are low true signals so we had to

	 6

modify our original controller. We also realized through the testbenching process that we

had to include many more states to account for all possible combinations of A and B

signals that we could receive from the debouncer. The state diagram for the controller can

be found in Appendix D and we can see the controller was also testbenched and the

results are clear in Appendix I. Therefore, we start in the idle state and wait for an input

signal to go low. Then, we move to our first hold state where we wait for the other input

signal to go low. If the first goes high before that happens, we must return to idle and this

same principle holds for all other hold states. If the second also goes low, we move to our

next hold state where we wait for the signal that went down first to return to high. Then

we move onto the increment or decrement state which outputs an inc or dec enable signal

when the second signal returns to high. Then it goes back to idle.

Colors

The colors module is a simple one, the code for which is found in Appendix P. It takes in

the input of 8 switches, each of which corresponds to a 4 bit code which is inputted into

memory and then a 12 bit color code which is read out later and dealt with in the VGA

part of the constraints file.

Board Top

In order to modularize our code and test just the parts of the code which dealt with the

FPGA, we created a top module for the board, found in Appendix O. This initialized four

debouncers, one for each signal, and two rotary encoder controllers, one per encoder. It

also initialized color switches by initializing the color module and translated the reset

button press into a signal.

	 7

PixelCalc

We create a module called PixelCalc in order to do the arithmetic for moving across the

screen at every click of the encoders. This works as a series of if statements into an

increment or decrement statement. We want to increment or decrement depending on if

the enable signal has been passed in and if we aren’t at a boundary. This code, found in

Appendix Q, was also tested with a testbench while we ran into bugs with our boundaries

and the results can be found in Appendix H.

Block RAM

We decided to do our memory through a True dual port block RAM that was generated

through Vivado. The write enable signal for the A side, or the writing side, was the video

on from the VGA controller and we wrote in the mem_color code from the Colors

module. Then, for the B side, or the read side, we had a write enable as well, which took

in the clear signal as the input and wrote all the addresses to black. The read output for

this was the color code at the VGA output’s address locations which were deciphered in

the top level. The memory map can be found in Appendix G. This made it easy for us to

store our addresses after we received a pixel x and y location from PixelCalc as a simple

concatenated vector, though it did end up taking up more memory than if we had used

arithmetic to simplify the addresses used for memory locations.

VGAController

The VGA Controller module, seen in Appendix R, was very similar to that of Professor

Hansen’s which was available to us in our class notes. We did not have to modify this for

our project much other than adding signals to actually increment pixel x and y locations,

	 8

since we were confident in the testbenched waveforms, in Appendix J, and their ability to

match those from the class notes.

Top

Finally, as with most projects, we had a Top file, for which the code is in Appendix S,

where we wired up all the modules with their FPGA inputs as inputs to the top and the

VGA outputs, i.e. Hsync, Vsync, and a 12-bit color vector, as outputs. The only non-

modular code in this file would be our color decoder which takes in the memory color

code after reading it and translates that into the 12-bit color that is needed for the VGA

constraints file.

2.4 Construction and debugging

Initially, we talked through our design and decided to write very modular code. First, we

designed and built the state machine for our rotary encoder controllers. Though this code later on

changed once we wrote a test bench to simulate the input, this was crucial in understanding how

the user’s input would be handled in the controller. Next, we focused on the VGA controller and

our code to calculate the pixel coordinates based on the VGA and user inputs. After writing a top

controller for the board and and overall top controller which combined all of our smaller

functions, we decided to focus on BRAM.

We tried to write the BRAM code ourselves instead of using Vivado’s tools and this is where we

ran into many problems. When trying to run our code, the VGA would simply not turn on and we

had many errors about lookup tables. We concluded that the BRAM was not functioning

properly and switched to use the Vivado tools for a True Dual Port Ram. After simulating our

rotary encoder controller with a test bench, we edited it to add more wait states. Finally, our

screen was able to turn on but the game was far from finished.

	 9

The initial image we drew on our VGA once working appeared twice, one on top of the other

with a unique border limitation that did not fill the entire screen. Our switches changed the colors

of the pixels drawn, but not in the order we expected. The reset button was also peculiar and

cleared the drawing but changed the background color to the previous pixel color. It also had a

random different tone for a vertical rectangle block on the screen that marked the borders for our

drawings. To debug this, we looked through our VGA controller and realized that we were

mapping into memory with a 10-bit X address and a 9-bit y address which meant that when they

became 17-bit addresses, they shifted the full concatenated memory address, causing the images

to be multiplied. We solved the problem by dividing both the x and y addresses by two (shifting

the vectors) when they were mapped as addresses into the memory.

Our final major bug was one where the right border of the screen was showing up blank even

though the pixel location was still incrementing. Initially we assumed this was an error in the

VGA controller due to the small size of the border. After some unsuccessful tries shifting the

H_video_on signal and Hsync signal by small factors, we realized this was not causing the

problem. We then decided to increase the amount of addresses which we could possibly store in

our Block RAM. Since we were simply concatenating X and Y for the BRAM address, we were

running out of memory early and therefore needed to increase memory depth for the full screen

to display. This was able to resolve our issue and leave us with a functional Etch-a-Sketch.

3. Justification and Evaluation

Overall, our project was designed well with very modular code and a resulting working Etch-a-

sketch. The colors chosen are bright and the switches are an intuitive way to change it. The way

that we decided to have larger scaled pixels for drawing paid off as the images come out clear.

Our decision to use Block RAM through Vivado’s IP tools also ended up working well and this

	 10

was better than the alternative with manually written Block RAM. If we were to do the project

again we would consider including the ability to change the background color in addition to the

pixel color. In addition to that, we also have some code blocks in our top level which assign final

colors which could have been included in our Colors module.

4. Conclusions

Our project successfully reached our goal of allowing the user to draw an image like the classic

Etch-a-sketch but in a digital version. As a bonus, our Etch-a-sketch allows you to change colors,

even to black so that you can erase or move across the screen without a mark, and reset the

screen with a button to start all over again. While we changed our design along the way, most

notably our initial rotary encoder controller, VGA controller logic and Block RAM, we think the

result is much improved from our initial design. We would recommend future groups to test each

section of their code as each part is built, to avoid dealing with lots of issues at once after

building the whole game. In general, starting as early as possible is useful since it is hard to

predict how much time it will take to fix bugs that come up.

5. Acknowledgements

We would like to thank Professor Hansen for all of his advice and patience during our time

designing and coding our project as well as with his guidance when it came to debugging our

code. We would also like to thank Dave for all of his patience throughout the project as well as

throughout labs this entire term. We would also like to thank all the learning fellows and lab TAs

that spent countless hours in the digital lab towards the end of the term helping us reason through

a lot of the logic from our device. A huge thanks to Ruthie for being our assigned learning fellow

who was always available to offer us guidance on bugs we ran into later on in the construction

process.

	 11

In general, we worked together whenever possible in terms of writing code so that we would

both understand the project and all of its functional blocks. Most of our design process was done

together from the block diagrams to the rotary encoder state diagram. Both members of the team

were present throughout most of the code writing process and through the debugging process.

Himadri produced most of the code for the Pixelcalc and Colors modules and Ali worked on

writing the testbenches for testing the modules. The top modules and the rotary encoder

controller were written by both. Most of the work that was put into the project, in terms of hours,

was done together. Throughout the testing processes, we consulted each other for advice.

6. References

Our code also has comments where references were included. Most of our code was only

referencing previous labs and lectures from Professor Hansen. We consulted Professor Hansen’s

VGA controller code as well when we ran into some bugs with our own. For our Debouncer

module, we sought outside references from Yourigh on Github who had provided a rotary

encoder debouncer which we modified for our project.

	 	

	 12

Appendices

ENGS 31: Digital Electronics

Digital Etch-a-Sketch
Alison Hagen and Himadri Narasimhamurthy

	 13

Appendix A: Annotated Photo

	
	 	

Basys3	Board	

VGA	Screen	

VGA	Connector	

Color	Switches	
From	left	to	right	(8)			

Clear	Button	
Center	in	cluster	

PMOD	Encoders	

	 14

Appendix B: Top Level Block Diagram

	
	 	

	 15

Appendix C: Modular Block Diagram

	
	 	

	 16

Appendix D: Rotary Encoder State Diagram

	 	

	 17

Appendix E: Parts List
*We make the assumption that the FPGA has the program written on it already – no need to
download the bitstream*
Reference Quantity Part Number Description

Basys 1 Basys3 The FPGA Board
Digilent 2 PModEnc The rotary encoders

VGA Screen 1 VGA Screen Display screen

VGA Connector Cable 1 n/a Connects the VGA to the Basys board

VGA Power Cord 1 n/a Connects VGA to power outlet

	 18

Appendix F: Datasheet for PMOD Rotary Encoders

	

	 19

Appendix G: Memory Map

Saved Information – Mem color

A four bit color code is saved into the address. It is dependent on the switch that is up and ranges
from 0000 to 0111 each of which is decoded into a color which is fed into the VGA at the level

of the constraints file.

Saved Address – Location

The pixel is saved at a location in the block ram that is fed in after PixelCalc when we

concatenate the x vector location and the y vector location into a 17 bit code. This is read back
out from memory according to the VGA controller’s concatenated x and y vectors and colors are

assigned.

x x x x x x x x x y y y y y y y y

	 20

Appendix H: Waveform – PixelCalc Module

	 	

In
 th

e
fo

llo
w

in
g

w
av

ef
or

m
, w

e
ar

e
ab

le
 to

 se
e

th
e

pr
op

er
 fu

nc
tio

na
lit

y
of

 P
ix

el
Ca

lc
. T

he
 c

ou
nt

s
in

cr
em

en
t o

r d
ec

re
m

en
t o

nl
y

w
he

n
th

e
in

c
an

d
de

c
en

ab
le

 si
gn

al
s a

re
 in

pu
tte

d.

	 21

Appendix I: Waveform – Rotary Encoder Controller

	 	

Th
is

sh
ow

s t
he

 p
ro

pe
r t

ra
ns

iti
on

 o
f s

ta
te

s i
n

th
e

Ro
ta

ry
 E

nc
od

er
 C

on
tro

lle
r m

od
ul

e.
 T

he
 o

ut
pu

t
sig

na
ls

ar
e

m
on

op
ul

se
d

an
d

th
ey

 a
re

 n
ot

 tr
ig

ge
re

d
un

til
 th

e
A

 a
nd

 B
 si

gn
al

s g
o

th
ro

ug
h

ap
pr

op
ria

te
 h

ol
d

sta
te

s.

	 22

Appendix J: Waveform – VGA Controller

	

	

	
	
These are the waveforms from our VGA Controller testbench. As we can see, they match the
waveform in the notes about the VGA controller as Hsync and Vsync correspond to the proper
values and video_on is accurate and dependent on H and V video_on signals.

	 23

	
Appendix K: Residual Warnings and Explanations

The only warnings that were left were the above warnings about unused registers being removed.
After consulting with Professor Hansen, we were able to confirm that these were not affecting
our code and that the values were still being used and incrementing properly even though Vivado
claimed to have removed the registers.

	 24

Appendix L: Usage Report
	

	 	

	 25

Appendix M: VHDL Code – Rotary Encoder Controller
--
-- Company:
-- Engineer: himadri narasimhamurthy and ali hagen
--
-- Create Date: 08/13/2018 01:55:29 PM
-- Design Name:
-- Module Name: RotaryEncoderController - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity RotaryEncoderController is
 Port (
 clk : in std_logic;
 encoderSig_A : in std_logic;
 encoderSig_b : in std_logic;
 inc_en : out std_logic;
 dec_en : out std_logic
);
 end RotaryEncoderController;

architecture Behavioral of RotaryEncoderController is

--state types
type state_type is (inc, dec, idle, hold1A, hold1B, hold2A, hold2B, hold3A, hold3B);
signal curr_state, next_state: state_type;

begin

--controller
state_update : process (clk)
begin
 if rising_edge(clk) then
 curr_state<= next_state;
 end if;
end process;

comb_logic : process (clk, encoderSig_A, encoderSig_B, curr_state)

	 26

begin

 next_state<=curr_state;
 dec_en <= '0';
 inc_en <= '0';

 case curr_state is
 when idle =>
 inc_en <= '0';
 dec_en <= '0';
 if encoderSig_A = '0' then
 next_state <= hold1A;
 elsif encoderSig_B = '0' then
 next_state <= hold1B;
 end if;
 when inc => inc_en <= '1';
 next_state<= idle;
 when dec => dec_en <= '1';
 next_state<= idle;
 when hold1A =>
 if encoderSig_A = '1' then
 next_state <= idle;
 elsif encoderSig_B = '0' then
 next_state <= hold2A;
 end if;
 when hold1B =>
 if encoderSig_B = '1' then
 next_state <= idle;
 elsif encoderSig_A = '0' then
 next_state <= hold2B;
 end if;
 when hold2A =>
 if encoderSig_A = '1' then
 next_state <= hold3A;
 elsif encoderSig_B = '1' then --blip
 next_state<= idle;
 end if;
 when hold2B =>
 if encoderSig_B = '1' then
 next_state <= hold3B;
 elsif encoderSig_A = '1' then --blip
 next_state<= idle;
 end if;
 when hold3A =>
 if encoderSig_B = '1' then
 next_state <= inc;
 elsif encoderSig_A = '0' then
 next_state <= idle;
 end if;
 when hold3B =>
 if encoderSig_A = '1' then
 next_state <= dec;
 elsif encoderSig_B = '0' then
 next_state <= idle;
 end if;
 end case;
end process;

end Behavioral;
	
	

	 27

Appendix N: VHDL Code – Debouncer Module
--
-- Engineer: modified by Himadri Narasimhamurthy and Ali Hagen
--
-- modified an online debouncer from Yourigh on Github
--
-- Create Date: 08/16/2018 08:45:33 PM
-- Design Name:
-- Module Name: Debouncer - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

--
entity Debouncer is
PORT (clk : in std_logic;
 initial : in std_logic; --non debounced inputs
 db_result : out std_logic
); --debounced outputs
end Debouncer;

architecture Behavioral of Debouncer is

 signal flipflop: std_logic_vector(1 downto 0);

 signal counter_set: std_logic;
 constant counter_size : integer := 10;
 signal counter_out : std_logic_vector(counter_size downto 0) := (others => '0');
begin

counter_set <= flipflop(0) xor flipflop(1);

debounce : process(clk)

begin
 if (clk'event and clk = '1') then
 flipflop(0) <= initial;
 flipflop(1) <= flipflop(0);

	 28

 if (counter_set = '1') then
 counter_out <= (others => '0');
 elsif (counter_out(counter_size) = '0') then
 counter_out <= counter_out + 1;
 else
 db_result <= flipflop(1);
 end if;
 end if;

end process;

end Behavioral;

	 29

Appendix O: VHDL Code – Board Top Level
--
-- Company:
-- Engineer: Ali Hagen
--
-- Create Date: 08/16/2018 10:32:31 PM
-- Design Name:
-- Module Name: TOP - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity BoardTop is
 Port (clk : in std_logic;
 RL_inc : in std_logic;
 RL_dec : in std_logic;
 UD_inc : in std_logic;
 UD_dec : in std_logic;
 rst : in std_logic;
 up : out std_logic;
 down : out std_logic;
 left : out std_logic;
 right : out std_logic;
 clr : out std_logic
);
end BoardTop;

architecture Behavioral of BoardTop is

Component Debouncer is
Port (clk : in std_logic;
 initial : in std_logic;
 db_result : out std_logic);
end component;

Component RotaryEncoderController is
 Port (clk : in std_logic;
 encoderSig_A : in std_logic;

	 30

 encoderSig_b : in std_logic;
 inc_en : out std_logic;
 dec_en : out std_logic);
end component;

-- intermediate signals
signal dbA1, dbA2, dbB1, dbB2 : std_logic;

begin

-- debounce the signals rom all of the rotary encoders
debouncer_A1 : Debouncer port map (
 clk => clk,
 initial => RL_inc,
 db_result => dbA1);
debouncer_A2 : Debouncer port map (
 clk => clk,
 initial => RL_dec,
 db_result => dbA2);
debouncer_B1 : Debouncer port map (
 clk => clk,
 initial => UD_inc,
 db_result => dbB1);
debouncer_B2 : Debouncer port map (
 clk => clk,
 initial => UD_dec,
 db_result => dbB2);

encoder_A : RotaryEncoderController port map (
 clk => clk,
 encoderSig_A => dbA1,
 encoderSig_b => dbA2,
 inc_en => right,
 dec_en => left);
encoder_B : RotaryEncoderController port map (
 clk => clk,
 encoderSig_A => dbB1,
 encoderSig_b => dbB2,
 inc_en => up,
 dec_en => down);

clear_proc: process(clk)
begin
 if (rising_edge(clk)) then
 clr <= '0';
 if rst = '1' then
 clr <= '1';
 end if;
 end if;
end process clear_proc;

end Behavioral;
	 	

	 31

Appendix P: VHDL Code – Colors Module
--
-- Company:
-- Engineer: Himadri Narasimhamurthy
--
-- Create Date: 08/18/2018 03:14:17 PM
-- Design Name:
-- Module Name: Colors - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity Colors is
 Port (
 sw_red: in std_logic;
 sw_yel: in std_logic;
 sw_grn: in std_logic;
 sw_blu: in std_logic;
 sw_cyn: in std_logic;
 sw_mag: in std_logic;
 sw_wht: in std_logic;
 sw_blk: in std_logic;
 --final_color: out std_logic_vector(11 downto 0);
 mem_col: out std_logic_vector(3 downto 0)
);
end Colors;

architecture Behavioral of Colors is

begin

color_proc: process(sw_red, sw_yel,sw_grn, sw_blu, sw_cyn, sw_mag, sw_wht, sw_blk)
begin
 if sw_red = '1' then
 --final_color<= "111100000000";
 mem_col <= "0000";
 elsif sw_yel = '1' then
 --final_color<= "111111110000";
 mem_col <= "0001";

	 32

 elsif sw_grn = '1' then
 --final_color<= "000011110000";
 mem_col <= "0010";
 elsif sw_blu = '1' then
 --final_color<= "000000001111";
 mem_col <= "0011";
 elsif sw_cyn = '1' then
 --final_color<= "000011111111";
 mem_col <= "0100";
 elsif sw_mag = '1' then
 --final_color<= "111100001111";
 mem_col <= "0101";
 elsif sw_wht = '1' then
 --final_color<= "111111111111";
 mem_col <= "0110";
 elsif sw_blk = '1' then
 --final_color <= "000000000000";
 mem_col <= "0111";
 else
 --final_color<= "111111111111";
 mem_col <= "0110";
 end if;

end process color_proc;

end Behavioral;
	 	

	 33

Appendix Q: VHDL Code – PixelCalc Module
--
-- Company: EtchASketch
-- Engineer: Himadri Narasimhamurthy
--
-- Create Date: 08/16/2018 09:49:52 PM
-- Design Name:
-- Module Name: PixelCalc - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--use IEEE.std_logic_arith.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity PixelCalc is
 Port (
 clk: in std_logic;
 incX_en: in std_logic;
 incY_en: in std_logic;
 decX_en: in std_logic;
 decY_EN: in std_logic;

 -- 2 pixel width
 x: out std_logic_vector(8 downto 0); --binary of 320 (101000000)
 y: out std_logic_vector(7 downto 0)); --binary of 240 (11110000)
end PixelCalc;

architecture Behavioral of PixelCalc is

--intermediate location signals
signal x_int: std_logic_vector(8 downto 0) := "010100000"; -- 160
signal y_int: std_logic_vector(7 downto 0) := "01111000"; -- 120

begin

calculateX: process(clk)

	 34

begin

 if rising_edge(clk) then
 --if (vid_on = '1') then
 if ((decX_en) = '1') then
 if (x_int+2 < 320) then
 x_int <= x_int + 1;
 end if;
 elsif (incX_en) = '1' then
 if (x_int > 0) then
 x_int <= x_int - 1;
 end if;
 end if;

 x<= std_logic_vector(unsigned(x_int));
 --end if;
 end if;
end process calculateX;

calculateY: process(clk)
begin
 if(rising_edge(clk)) then
 --if (vid_on = '1') then
 if ((incY_en) = '1') then
 if (y_int+2 < 240) then
 y_int <= y_int + 1;
 end if;
 elsif ((decY_en) = '1') then
 if (y_int > 0) then
 y_int <= y_int - 1;
 end if;
 end if;

 y<= std_logic_vector(unsigned(y_int));
 -- end if;
 end if;
end process calculateY;

end Behavioral;
	 	

	 35

Appendix R: VHDL Code – VGA Controller
	
-- Code your design here
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY VGAController IS
PORT (vclk : in STD_LOGIC; --100 MHz clock
 Vsync : out STD_LOGIC;
 Hsync : out STD_LOGIC;
 video_on: out STD_LOGIC;
 pixel_x : out STD_LOGIC_vector(9 downto 0);
 pixel_y : out STD_LOGIC_VECTOR(8 downto 0));
end VGAController;

architecture behavior of VGAController is

--video on signals
signal H_video_on : STD_LOGIC := '1';
signal V_video_on : STD_LOGIC := '1';

--internal signals to determine when last Hsync went
signal h_complete : STD_LOGIC := '1'; --used to take place of rising_edge(H_sync)

--VGA Constants

constant left_border : integer := 48;
constant h_display : integer := 640;
constant right_border : integer := 16;
constant h_retrace : integer := 96;
constant HSCAN : integer := left_border + h_display + right_border + h_retrace - 1; --
number of PCLKs in an H_sync period

--counts
signal H_CNT : integer:= 0;
signal V_CNT : integer:= 0;

constant top_border : integer := 29;
constant v_display : integer := 480;
constant bottom_border : integer := 10;
constant v_retrace : integer := 2;
constant VSCAN : integer := top_border + v_display + bottom_border + v_retrace - 1; --
number of H_syncs in an V_sync period

BEGIN

hCounter: process(vclk)
begin
if rising_edge(vclk) then
 if (H_CNT < HSCAN) then
 H_CNT <= H_CNT + 1;
 else
 H_CNT <= 0;
 end if;
end if;
end process hCounter;

vCounter: process(vclk)

	 36

begin
if rising_edge(vclk) then
 if (H_complete = '1') then -- works as rising clk on h
 if (V_CNT < VSCAN) then
 V_CNT <= V_CNT + 1;
 else
 V_CNT <= 0;
 end if;
end if;
end if;
end process vCounter;

H_Logic: process (H_CNT)
begin

 pixel_x <=STD_LOGIC_VECTOR(to_unsigned(H_CNT, 10));

 if (H_CNT>= h_display) and (H_CNT <HSCAN) then
 H_video_on <= '0';
 else H_video_on <= '1';
 end if;

 if (H_CNT >= h_display + right_border) and (H_CNT <HSCAN-left_border) then
 Hsync <= '0';
 else Hsync <= '1';
 end if;

 if (H_CNT = HSCAN) then
 H_complete <= '1';
 else H_complete <= '0';
 end if;

end process H_Logic;

--V_sync generating process
Vert_logic : process(V_CNT)
begin

 pixel_y <=STD_LOGIC_VECTOR(to_unsigned(V_CNT,9));

 if (V_CNT >= v_display) and (V_CNT<VSCAN) then
 V_video_on <= '0';
 else V_video_on <= '1';
 end if;

 if (V_CNT >= v_display + bottom_border) and (V_CNT < VSCAN-top_border) then
 Vsync <= '0';
 else Vsync <= '1';
 end if;

end process Vert_logic;

video_on <= H_video_on AND V_video_on;

end behavior;
	 	

	 37

Appendix S: VHDL Code – Top Level
--
-- Company:
-- Engineer: Himadri Narasimhamurthy and Ali Hagen
--
-- Create Date: 08/20/2018 01:54:30 PM
-- Design Name:
-- Module Name: Top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM; -- needed for the BUFG component
use UNISIM.Vcomponents.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity Top is
 Port (
 clk: in std_logic;
 right_top, left_top, up_top, down_top : in std_logic;
 switch_red: in std_logic;
 switch_yel: in std_logic;
 switch_grn: in std_logic;
 switch_blu: in std_logic;
 switch_cyn: in std_logic;
 switch_mag: in std_logic;
 switch_wht: in std_logic;
 switch_blk: in std_logic;
 clr_top : in std_logic;
 Hsync: out std_logic;
 Vsync: out std_logic;
 color: out std_logic_vector(11 downto 0)
);
end Top;

architecture Behavioral of Top is

COMPONENT blk_mem_gen_0 is

	 38

 PORT (
 clka : IN STD_LOGIC;
 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 addra : IN STD_LOGIC_VECTOR(16 DOWNTO 0);
 dina : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 douta : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 clkb : IN STD_LOGIC;
 web : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 addrb : IN STD_LOGIC_VECTOR(16 DOWNTO 0);
 dinb : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 doutb : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
 END COMPONENT;

Component BoardTop is
 Port(
 clk : in std_logic;
 RL_inc : in std_logic;
 RL_dec : in std_logic;
 UD_inc : in std_logic;
 UD_dec : in std_logic;
 rst : in std_logic;
 up : out std_logic;
 down : out std_logic;
 left : out std_logic;
 right : out std_logic;
 clr : out std_logic
);
end component;

Component Colors is
 Port(
 sw_red: in std_logic;
 sw_yel: in std_logic;
 sw_grn: in std_logic;
 sw_blu: in std_logic;
 sw_cyn: in std_logic;
 sw_mag: in std_logic;
 sw_wht: in std_logic;
 sw_blk: in std_logic;
 --final_color: out std_logic_vector(11 downto 0);
 mem_col: out std_logic_vector(3 downto 0)
);
end component;

Component PixelCalc is
 Port(
 clk: in std_logic;
 incX_en: in std_logic;
 incY_en: in std_logic;
 decX_en: in std_logic;
 decY_EN: in std_logic;

 -- 2 pixel width
 x: out std_logic_vector(8 downto 0); --binary of 320 (101000000)
 y: out std_logic_vector(7 downto 0) --binary of 240 (11110000)
);
end component;

Component VGAController is
 Port(

	 39

 vclk : in STD_LOGIC; --25 MHz clock
 Vsync: out STD_LOGIC;
 Hsync: out STD_LOGIC;
 video_on: out STD_LOGIC;
 pixel_x: out std_logic_vector(9 downto 0);
 pixel_y: out std_logic_vector(8 downto 0)
);
end component;

signal u_int, d_int, r_int, l_int: std_logic;
signal loc_x_int: std_logic_vector(8 downto 0);
signal loc_y_int: std_logic_vector(7 downto 0);
signal pixloc: std_logic_vector(16 downto 0);

signal x: std_logic_vector(9 downto 0);
signal y: std_logic_vector(8 downto 0);
signal vgaloc: std_logic_vector(16 downto 0);
signal video_on: std_logic;

signal clr_int: std_logic;

--signal color_int: std_logic_vector(11 downto 0);
signal mem_color_int: std_logic_vector(3 downto 0);
signal mem_color_fin: std_logic_vector(3 downto 0) := "0111"; -- changed
signal mem_color_t: std_logic_vector(3 downto 0);

signal wea_int : std_logic;
signal addra_int, addrb_int : std_logic_vector(16 downto 0);
signal dia_int, dob_int : std_logic_vector(3 downto 0);

constant SCLK_DIVIDER_VALUE: integer := 4/2; --4/2
--constant CLOCK_DIVIDER_VALUE: integer := 5; -- for simulation
signal sclkdiv: unsigned(1 downto 0) := (others => '0'); -- clock divider counter
signal sclk_unbuf: std_logic := '0'; -- unbuffered serial clock
signal divclk: std_logic := '0'; -- internal serial clock

signal num_int1 : integer := 0;
signal num_int2 : integer := 0;

signal video_on_vect : std_logic_vector(0 downto 0) := "0";
signal clr_vect : std_logic_vector(0 downto 0) := "0";

begin

-- Clock buffer for sclk
-- The BUFG component puts the signal onto the FPGA clocking network
Slow_clock_buffer: BUFG
 port map (I => sclk_unbuf,
 O => divclk);

-- Divide the 100 MHz clock down to 2 MHz, then toggling a flip flop gives the final
-- 1 MHz system clock
Serial_clock_divider: process(clk)
begin
 if rising_edge(clk) then
 if sclkdiv = SCLK_DIVIDER_VALUE-1 then
 sclkdiv <= (others => '0');
 sclk_unbuf <= NOT(sclk_unbuf);
 else
 sclkdiv <= sclkdiv + 1;
 end if;

	 40

 end if;
end process Serial_clock_divider;

board: BoardTop port map(
 clk => divclk,
 RL_inc => right_top,
 RL_dec => left_top,
 UD_inc => up_top,
 UD_dec => down_top,
 rst => clr_top,
 up => u_int,
 down => d_int,
 left => l_int,
 right => r_int,
 clr => clr_int
);
location: PixelCalc port map(
 clk => divclk,
 incX_en => r_int,
 incY_en => u_int, --swapped r and l
 decX_en => l_int,
 decY_EN => d_int,

 -- 2 pixel width
 x => loc_x_int, --binary of 320 (101000000)
 y => loc_y_int
);
--pixel combined address for mem
pixloc <= std_logic_vector((unsigned(loc_x_int))) &
std_logic_vector((unsigned(loc_y_int)));

color_switches: Colors port map(
 sw_red => switch_red,
 sw_yel => switch_yel,
 sw_grn => switch_grn,
 sw_blu => switch_blu,
 sw_cyn => switch_cyn,
 sw_mag => switch_mag,
 sw_wht => switch_wht,
 sw_blk => switch_blk,
 --final_color => color_int,
 mem_col=> mem_color_int
);

vga: VGAController port map(
 vclk => divclk,
 Vsync => Vsync,
 Hsync => Hsync,
 video_on => video_on,
 pixel_x => x,
 pixel_y => y);

vgaloc <= x(9 downto 1) & y(8 downto 1);

--extra signal to convert video_on to std_logic_vector
video_on_vect(0) <= video_on;
clr_vect(0) <= clr_top;

BRAM : blk_mem_gen_0
 PORT MAP (
 clka => divclk,

	 41

 wea => video_on_vect,
 addra => pixloc, --write address
 dina => mem_color_int,
 douta => mem_color_t,
 clkb => divclk,
 web => clr_vect,
 addrb => vgaloc, --todo
 dinb => "0000",
 doutb => mem_color_fin
);

color_proc : process(clk, video_on, mem_color_fin)
begin
if rising_edge(clk) then
 if video_on = '1' then
 if mem_color_fin = "0000" then
 color <= "000000000000"; -- black
 elsif mem_color_fin = "0001" then
 color <= "111100000000"; --yellow
 elsif mem_color_fin = "0010" then
 color<= "000011110000"; -- green
 elsif mem_color_fin = "0011" then
 color<= "000000001111"; --blue
 elsif mem_color_fin = "0100" then
 color<= "000011111111"; --cyan
 elsif mem_color_fin = "0101" then
 color<= "111100001111"; --magenta
 elsif mem_color_fin = "0110" then
 color<= "111111111111"; -- white
 elsif mem_color_fin = "0111" then
 color <= "111111110000"; --red
 else color <= "111111111111";
 end if;
 else color <= "000000000000";
 end if;
end if;
end process color_proc;
end Behavioral;
	 	

	 42

Appendix T: VHDL Code – Constraints File

This file is a general .xdc for the Basys3 rev B board
To use it in a project:
- uncomment the lines corresponding to used pins
- rename the used ports (in each line, after get_ports) according to the top level
signal names in the project

Clock signal
#Bank = 34, Pin name = CLK, Sch name = CLK100MHZ
set_property PACKAGE_PIN W5 [get_ports clk]
set_property IOSTANDARD LVCMOS33 [get_ports clk]
create_clock -period 10.000 -name sys_clk_pin -waveform {0.000 5.000} -add [get_ports
clk]

Switches
set_property PACKAGE_PIN V2 [get_ports switch_blk]
set_property IOSTANDARD LVCMOS33 [get_ports switch_blk]
set_property PACKAGE_PIN T3 [get_ports switch_wht]
set_property IOSTANDARD LVCMOS33 [get_ports switch_wht]
set_property PACKAGE_PIN T2 [get_ports switch_mag]
set_property IOSTANDARD LVCMOS33 [get_ports switch_mag]
set_property PACKAGE_PIN R3 [get_ports switch_cyn]
set_property IOSTANDARD LVCMOS33 [get_ports switch_cyn]
set_property PACKAGE_PIN W2 [get_ports switch_blu]
set_property IOSTANDARD LVCMOS33 [get_ports switch_blu]
set_property PACKAGE_PIN U1 [get_ports switch_grn]
set_property IOSTANDARD LVCMOS33 [get_ports switch_grn]
set_property PACKAGE_PIN T1 [get_ports switch_yel]
set_property IOSTANDARD LVCMOS33 [get_ports switch_yel]
set_property PACKAGE_PIN R2 [get_ports switch_red]
set_property IOSTANDARD LVCMOS33 [get_ports switch_red]

#Buttons
#Bank = 14, Pin name = , Sch name = BTNC
set_property PACKAGE_PIN U18 [get_ports clr_top]
set_property IOSTANDARD LVCMOS33 [get_ports clr_top]

##Pmod Header JA - RL
##Bank = 15, Pin name = IO_L1N_T0_AD0N_15, Sch name = JA1
set_property PACKAGE_PIN J1 [get_ports {right_top}]
set_property IOSTANDARD LVCMOS33 [get_ports {right_top}]
##Bank = 15, Pin name = IO_L5N_T0_AD9N_15,gh Sch name = JA2
set_property PACKAGE_PIN L2 [get_ports {left_top}]
set_property IOSTANDARD LVCMOS33 [get_ports {left_top}]

#Pmod Header JB - UD
#Bank = 15, Pin name = IO_L15N_T2_DQS_ADV_B_15, Sch name = JB1
set_property PACKAGE_PIN A14 [get_ports up_top]
set_property IOSTANDARD LVCMOS33 [get_ports up_top]
###Bank = 14, Pin name = IO_L13P_T2_MRCC_14, Sch name = JB2
set_property PACKAGE_PIN A16 [get_ports down_top]
set_property IOSTANDARD LVCMOS33 [get_ports down_top]

##VGA Connector
##Bank = 14, Pin name = , Sch name = VGA_R0
set_property PACKAGE_PIN G19 [get_ports color[0]]
set_property IOSTANDARD LVCMOS33 [get_ports color[0]]
###Bank = 14, Pin name = , Sch name = VGA_R1

	 43

set_property PACKAGE_PIN H19 [get_ports color[1]]
set_property IOSTANDARD LVCMOS33 [get_ports color[1]]
###Bank = 14, Pin name = , Sch name = VGA_R2
set_property PACKAGE_PIN J19 [get_ports color[2]]
set_property IOSTANDARD LVCMOS33 [get_ports color[2]]
###Bank = 14, Pin name = , Sch name = VGA_R3
set_property PACKAGE_PIN N19 [get_ports color[3]]
set_property IOSTANDARD LVCMOS33 [get_ports color[3]]
###Bank = 14, Pin name = , Sch name = VGA_B0
set_property PACKAGE_PIN N18 [get_ports color[4]]
set_property IOSTANDARD LVCMOS33 [get_ports color[4]]
###Bank = 14, Pin name = , Sch name = VGA_B1
set_property PACKAGE_PIN L18 [get_ports color[5]]
set_property IOSTANDARD LVCMOS33 [get_ports color[5]]
###Bank = 14, Pin name = , Sch name = VGA_B2
set_property PACKAGE_PIN K18 [get_ports color[6]]
set_property IOSTANDARD LVCMOS33 [get_ports color[6]]
###Bank = 14, Pin name = , Sch name = VGA_B3
set_property PACKAGE_PIN J18 [get_ports color[7]]
set_property IOSTANDARD LVCMOS33 [get_ports color[7]]
##Bank = 14, Pin name = , Sch name = VGA_G0
set_property PACKAGE_PIN J17 [get_ports color[8]]
set_property IOSTANDARD LVCMOS33 [get_ports color[8]]
###Bank = 14, Pin name = , Sch name = VGA_G1
set_property PACKAGE_PIN H17 [get_ports color[9]]
set_property IOSTANDARD LVCMOS33 [get_ports color[9]]
###Bank = 14, Pin name = , Sch name = VGA_G2
set_property PACKAGE_PIN G17 [get_ports color[10]]
set_property IOSTANDARD LVCMOS33 [get_ports color[10]]
###Bank = 14, Pin name = , Sch name = VGA_G3
set_property PACKAGE_PIN D17 [get_ports color[11]]
set_property IOSTANDARD LVCMOS33 [get_ports color[11]]
###Bank = 14, Pin name = , Sch name = VGA_HS
set_property PACKAGE_PIN P19 [get_ports Hsync]
set_property IOSTANDARD LVCMOS33 [get_ports Hsync]
##Bank = 14, Pin name = , Sch name = VGA_VS
set_property PACKAGE_PIN R19 [get_ports Vsync]
set_property IOSTANDARD LVCMOS33 [get_ports Vsync]

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]
set_property CONFIG_MODE SPIx4 [current_design]

set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]

set_property CONFIG_VOLTAGE 3.3 [current_design]
set_property CFGBVS VCCO [current_design]

	

